Pesign and Implementation of 00 jprew

Marcel A. Ball

00 jprew

- * Reasoning engine that was implemented. Includes:
 - * Positional Prolog style logic
 - * 00 features from RuleML
 - * Slots, Order-Sorted Types, oids
 - * Implements a subset of the SWRL built-ins
- * Based to some extent upon Bruce Spencer's jDREW reasoning engine (www.jdrew.org)

Keyed Parameters (Slots)

- * Allows for a non-positional knowledge representation
 - * Useful for representing RDF descriptions

In a positional knowledge representation

- * Multiple possible interpretations
- * Ordering of arguments is important

father (henry, george).

Keyed Parameters (Slots)

- * Slotted version is unambiguous
- * Order is no longer important

father(parent->Henry; child->George).

* Canonical order is imposed internally to make unification efficient

Keyed Parameters & Rest Variables Queries

person(name->Henry; sex->male; ...; age->22).

Fact

person(name->?name; age->22).

person(age->22; name->?name !?rest).

Order-Sorted Types

- * Type sorts encoded in RDF Schema
- * Internally represented as a lattice
- * Type operations computed using lattice algorithms

Order-Sorted Types Example

Vehicle type is "ToyotaCorolla"

Inheritance path:
ToyotaCorolla -> Sedan ->
Car -> Vehicle -> Thing

Order-Sorted Types

- * Basic order-sorted types can be reduced to extra unary predicates called in the body
 - * More complex representation
 - * More resolution steps, leads to slower inferences

Time comparison of built-in sorts with unary predicates

	00 jDREW with built-in order-sorted types	00 jDREW with unary predicates
Average Time	256 ms	473 ms

Object Identifiers (oids)

- * Allows unique identification of facts
 - * Makes finding possible facts quicker if oid is known and specified in a goal
 - * Like sending a message to a specified object
- * Poes not affect the main unification algorithm only affects the search for matching clauses

Built-in Relations

- * Many relations cannot be expressed as a finite set of facts and rules
 - * This requires having a system for built-in relations
- * Two goals of the Built-in system:
 - * Easily expandable without detailed knowledge of the system
 - * Common built-in relations included within engine
 - * 00 jDREW implements subset of SWRL built-ins

Future Work

- * Improved Indexing System
 - * Currently only indexed by relation name and oid (to ensure uniqueness)
 - * Possible to create an indexing system based upon Discrimination Trees
- * Improved Typing System
 - * Currently only models taxonomic relationships

Conclusions and Questions

- * The developed engine is able to use the combined positional/Object-Oriented RuleML
 - * Work in progress on an advanced indexing system that may improve scaleability for large knowledge bases
 - * URIs as oids are not currently implemented (difficulties with normalizing URIs)
- * Available online at http://www.jdrew.org/oojdrew/