Evaluating Centralized, Hierarchical, and Networked Architectures for Rule Systems

Benjamin Craig

University of New Brunswick
Faculty of Computer Science
Fredericton, NB, Canada

Senior Technical Report Presentation
November 20, 2008
Outline

- Defining the Terminology
 - Rules, Distributed Systems, Topologies, OO jDREW, Rule Responder
- Topologies for Distributed Architectures
 - Star Topology Advantages and Disadvantages
 - P2P Topology Advantages and Disadvantages
- Knowledge Maintenance for Rule Systems
 - Knowledge Organization
 - Knowledge Maintenance
- Conclusion
What is a rule?

- Fact (POSL format):
 spending(Peter Miller, min 5000 euro, last year).

- Rule (POSL format):
 premium(?Customer) :-
 spending(?Customer, min 5000 euro, last year).

- A deductive rule engine can deduce that Peter Miller is a premium customer from his spending
Distributed Systems

- A distributed system is a set of computer processes that appear to the user as a single system
- The distributed system must coordinate all of these processes
- Distributed systems are implemented using middleware that creates a communication topology
Hierarchical - Star Topology

- Single level hierarchy
- Star: connects all spokes with a centralized hub
- All information must be sent through the hub to the spokes
Networked - P2P Topology

- Fully connected network
 - Full mesh topology: connects all nodes together with a direct connection

- Partially connected network
 - Partial mesh topology: Only a subset of nodes are connected together
OO jDREW

- Centralized Rule System

- Object Oriented Java Deductive Reasoning Engine for the Web – extensions of jDREW

- Also implements agents of Rule Responder
Rule Responder

- Distributed rule system
- Is currently implemented as a hierarchical rule system
- Rule Responder is a prototypical multi-agent system for virtual communities
- Supports rule-based collaboration between the distributed members of community
- Members are assisted by semi-automated rule-based agents, which use rules to describe the decision and behavioral logic
Star-Like Rule Responder Architecture

EA: External Agent

Hub — OA: Organizational Agent
Spoke — PA: Personal Agent

Virtual Organization

Expert₁

Expert₂

Expert₃

Expert₄

Expert₅

PA₁

PA₂

PA₃

PA₄

PA₅
Topology Performance

- When building a distributed system a communication topology is required.
- Distributed topologies all have communication overhead that centralized systems do not have.
- A key design goal for distributed systems is to minimize this communication overhead.
Star Advantages

- Isolation of spokes from other spokes
 - If one spoke fails then it does not affect others
- Adding and removing nodes in the hub is trivial (just add/remove a spoke)
- Hub provides single point of inspection of all traffic through the topology
 - Improved Security
- Trouble shooting is easy
- Easy to understand and implement
Star Disadvantages

- Scalability, reliability and performance of the star topology rely on the hub.
- If the hub fails then the entire system fails.
- The hub can become overloaded and the system will experience slowdown.

To prevent the bottleneck of the star topology a P2P topology can be used.
P2P Advantages

- Removes bottleneck performance issues of the star topology
- Whenever a node is added the internal bandwidth capacity is increased
- When a node fails the system will be able to recover
 - A peer can act in place of another peer
P2P Disadvantages

- Adding and removing nodes in the P2P topology is non-trivial (need to add many connections)

- P2P networks are more complicated than star topologies
 - Difficult trouble shooting
 - Difficult to implement
Knowledge Maintenance for Rule Systems

- A centralized rule system has all of the knowledge stored in a single location
 - Either a file or a database
- Both distributed topologies are used to implement rule systems
- A distributed rule system partitions the knowledge bases across the system
 - Each knowledge base acts as a module
 - Many files and databases
Knowledge Organization - I

- When deciding how to group modules one of two ways can be used
 - Predicate Centric
 - All clauses of a predicates are stored in one module
 - Person Centric
 - All clauses about one person or thing is stored in one module
 - Rule Responder uses person centric organization
- example on next slide
Knowledge Organization - II

- Predicate Centric:
 - phoneOf(ben, 1-506-270-3403)
 - phoneOf(jim, 1-506-275-9712)
 - emailOf(ben, ben.craig@unb.ca)
 - emailOf(jim, jim.lorde@unb.ca)

- Person Centric:
 - phoneOf(ben, 1-506-270-3403)
 - emailOf(ben, ben.craig@unb.ca)
 - phoneOf(jim, 1-506-275-9712)
 - emailOf(jim, jim.lorde@unb.ca)
Module Boundaries

- When querying modules, sometimes information from multiple modules is required
- Example Queries
 - “What are the phone numbers of everyone in the organization?”
 - This query must backtrack across multiple modules when using person centric storage
 - “What properties does Ben have?”
 - This query does not require backtracking across multiple modules when using person centric storage
Centralized Maintenance

- All knowledge is stored in a single location
 - Updating knowledge is simple
 - Can better avoid/repair knowledge inconsistencies
- All knowledge is stored in a single format
 - No translation steps when using a rule engine to execute the rules and facts
Distributed Maintenance

- Knowledge is stored in many locations
 - Each agent can scalable update their own knowledge
 - Knowledge bases could become incomplete or inconsistent
 - Integrity rules can be used to test if the knowledge is complete and consistent

- Knowledge is stored in many formats
 - Translation steps are required when sending a query from one rule engine to another
 - An interchange language is required
Deployed Benchmarking Use Case

- RuleML-20xy Symposia
 - An organizational agent acts as the single point of entry to **assist** with symposium planning:
 - Currently, query answering about the symposium
 - Ultimately, preparing and running the symposium
 - Personal agents have supported symposium chairs since 2007 (deployed as **Q&A** in 2008)
 - General Chair, Program Chair, Panel Chair, Publicity Chair, etc.
Queries Used

- 1) Sponsoring the symposium: 5 rules
- 2) Check panel participants: 1 rule, 3 joins
- 3) View symposium sponsors: 1 rule, 3 joins
- 4) View organization partners: 1 rule, 2 joins
- 5) Check panel time: 1 rule, 5 joins
Benchmarking

Query: Computation Time (ms):
1) 141
2) 31
3) 22
4) 18
5) 16

- Results show that our centralized use case does not take much computation time
- Queries do not require heavy computation
Rule Responder (Hierarchical) Benchmarking

- Same 5 queries used as in the OO jDREW benchmarking

Query: Computation Time (ms):
1) 3430
2) 4861
3) 4057
4) 9048
5) 2780

- Increase in computation time due to sequential delivery of answers to the queries
- Communication overhead of distributed system not compensated by workload distribution
Network Performance Considerations

- Speed-ups can be obtained using a P2P topology
- Instead of all communication going 'vertically' through the hub, direct 'horizontal' communication between spokes could be often used
 - Will reduce the amount of communication steps in the distributed system
- The bottleneck issue of a hierarchical system does not exist in a networked system
Conclusion

- A rule system can be either distributed or centralized
- When using a distributed system the communication topology must be decided
- The topology should reflect the modularization decisions about the distributed rule system
- The advantages and disadvantages of distributed knowledge maintenance must be weighted when building a rule system
- Our initial benchmarks, not requiring heavy computation, show increase in computation time for a distributed hierarchal system
- Only networked systems will *scale* to the Web